Using Feature Selection and Unsupervised Clustering to Identify Affective Expressions in Educational Games

نویسندگان

  • Saleema Amershi
  • Cristina Conati
  • Heather Maclaren
چکیده

Educational games can induce a wide range of emotions, and so recognizing specific emotions may be valuable for an intelligent system that aims to adapt to varying student needs so as to improve learning. The long-term goal of this work is to understand how user affect impacts overall learning in an educational game. The main contribution of this paper is an investigation into the use of an unsupervised machine learning technique to help recognize meaningful patterns in biometric affective data. Results show that this method can identify interesting and sensible student reactions to different game events.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm

This paper describes a novel feature selection algorithm for unsupervised clustering, that combines the clustering ensembles method and the population based incremental learning algorithm. The main idea of the proposed unsupervised feature selection algorithm is to search for a subset of all features such that the clustering algorithm trained on this feature subset can achieve the most similar ...

متن کامل

Application of Feature Selection for Unsupervised Learning in Prosecutors' Office

Feature selection is effective in removing irrelevant data. However, the result of feature selection in unsupervised learning is not as satisfying as that in supervised learning. In this paper, we propose a novel methodology ULAC (Feature Selection for Unsupervised Learning Based on Attribute Correlation Analysis and Clustering Algorithm) to identify important features for unsupervised learning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006